POS Tagging of Dialectal Arabic: A Minimally Supervised Approach

نویسندگان

  • Kevin Duh
  • Katrin Kirchhoff
چکیده

Natural language processing technology for the dialects of Arabic is still in its infancy, due to the problem of obtaining large amounts of text data for spoken Arabic. In this paper we describe the development of a part-of-speech (POS) tagger for Egyptian Colloquial Arabic. We adopt a minimally supervised approach that only requires raw text data from several varieties of Arabic and a morphological analyzer for Modern Standard Arabic. No dialect-specific tools are used. We present several statistical modeling and cross-dialectal data sharing techniques to enhance the performance of the baseline tagger and compare the results to those obtained by a supervised tagger trained on hand-annotated data and, by a state-ofthe-art Modern Standard Arabic tagger applied to Egyptian Arabic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lexicon Acquisition for Dialectal Arabic Using Transductive Learning

We investigate the problem of learning a part-of-speech (POS) lexicon for a resource-poor language, dialectal Arabic. Developing a high-quality lexicon is often the first step towards building a POS tagger, which is in turn the front-end to many NLP systems. We frame the lexicon acquisition problem as a transductive learning problem, and perform comparisons on three transductive algorithms: Tra...

متن کامل

An improved joint model: POS tagging and dependency parsing

Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...

متن کامل

Transforming Standard Arabic to Colloquial Arabic

We present a method for generating Colloquial Egyptian Arabic (CEA) from morphologically disambiguated Modern Standard Arabic (MSA). When used in POS tagging, this process improves the accuracy from 73.24% to 86.84% on unseen CEA text, and reduces the percentage of out-ofvocabulary words from 28.98% to 16.66%. The process holds promise for any NLP task targeting the dialectal varieties of Arabi...

متن کامل

YADAC: Yet another Dialectal Arabic Corpus

This paper presents the first phase of building YADAC – a multi-genre Dialectal Arabic (DA) corpus – that is compiled using Web data from microblogs (i.e. Twitter), blogs/forums and online knowledge market services in which both questions and answers are user-generated. In addition to introducing two new genres to the current efforts of building DA corpora (i.e. microblogs and question-answer p...

متن کامل

Context-dependent type-level models for unsupervised morpho-syntactic induction

This thesis improves unsupervised methods for part-of-speech (POS) induction and morphological word segmentation by modeling linguistic phenomena previously not used. For both tasks, we realize these linguistic intuitions with Bayesian generative models that first create a latent lexicon before generating unannotated tokens in the input corpus. Our POS induction model explicitly incorporates pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005